by Benjamin Bloch, Ph.D. 1- Area = $\frac{1}{2}$ base x height From the apex drop a perpendicular to the base. The triangle being isosceles has equal base angles so that the perpendicular is also an angle bisector. The height of the perpendicular bisector equals $s \cos \theta$, and the base equals $2s \sin \theta$. Therefor the area $A = s^2 \sin \theta \cos \theta$. We want dA/d θ = 0. Since (d/d θ) sin θ = cos θ and (d/d θ) cos θ = - sin θ We get $dA/d\theta = s^2 (\cos^2 \theta - \sin^2 \theta) = 0$. Therefore $\cos\theta = \sin\theta$, $\theta = 45$ degrees, and thus the included angle is $2\theta = 90$ degrees. 2- $\sin 45 = \cos 45 = 2^{1/2}/2$, so that the maximum area = $\frac{1}{2}$ s². 3- $P = s(2 + 2^{1/2})$.