

by Benjamin Bloch, Ph.D.

1- Area =  $\frac{1}{2}$  base x height

From the apex drop a perpendicular to the base. The triangle being isosceles has equal base angles so that the perpendicular is also an angle bisector.

The height of the perpendicular bisector equals  $s \cos \theta$ , and the base equals  $2s \sin \theta$ . Therefor the area  $A = s^2 \sin \theta \cos \theta$ .

We want dA/d $\theta$ = 0. Since (d/d $\theta$ ) sin  $\theta$  = cos  $\theta$  and (d/d $\theta$ ) cos  $\theta$  = - sin  $\theta$ 

We get  $dA/d\theta = s^2 (\cos^2 \theta - \sin^2 \theta) = 0$ .

Therefore  $\cos\theta = \sin\theta$ ,  $\theta = 45$  degrees, and thus the included angle is  $2\theta = 90$  degrees.

2-  $\sin 45 = \cos 45 = 2^{1/2}/2$ , so that the maximum area =  $\frac{1}{2}$  s<sup>2</sup>.

3-  $P = s(2 + 2^{1/2})$ .