

by Dave Lindell, L.S.

Angle AQE is 3/7 of 360° or 1080°/7

Angle QAE = angle QEA = $\frac{1}{2}$ (180° - 1080°/7) = 90° - 540°/7.

There are 7 sides so there are $(7-2)x180^\circ = 900^\circ$ of interior angles. Each angle at a vertex, e.g. AGF and GFE, is $900^\circ/7$ and the angles at the base of the isosceles triangles QEF, QFG and QAG are all $450^\circ/7$.

Angle FGE = angle FEG = $\frac{1}{2}$ (180° - 900°/7) = 90° - 450°/7.

Angle AEG = angle QEF - angle QEA - angle FEG
=
$$450^{\circ}/7 - (90^{\circ}-540^{\circ}/7) - (90^{\circ}-450^{\circ}/7)$$

= $180^{\circ}/7 = 25^{\circ}42'51.4285''$

Angle EAG = angle QAG - angle QAE
=
$$450^{\circ}/7 - (90^{\circ}-540^{\circ}/7)$$

= $360^{\circ}/7 = 51^{\circ}25'42.8571"$

Angle AGE = angle AGF - angle FGE
=
$$900^{\circ}/7 - (90^{\circ}-450^{\circ}/7)$$

= $720^{\circ}/7 = 102^{\circ}51'25.714"$

The angles are in the ratio $180^{\circ}/7:360^{\circ}/7:720^{\circ}/7$ or 1:2:4.

In quadrilateral ABEG: BE = AE = g, BG = GE = a, BA = AG = e

By Ptolemy's Theorem:

 $BA \times GE + AG \times BE = AE \times BG$, or ea + eg = ag

dividing by eag,
$$\frac{1}{g} + \frac{1}{e} = \frac{1}{e}$$