Solution to Problem 43

SOLUTION TO PROBLEM NO. 43 (TEXT)
Let the sea level distance be equal to the measured distance, \(m \), less some correction, \(c \).
Let \(R \) equal the radius of the earth at sea level and let \(a \) equal the average height.

\[
\begin{align*}
 m - c &= m \\
 \text{By similar sectors:} & \quad \frac{m}{R} = \frac{c}{R + a} \\
 \frac{m}{R} + \frac{c}{R + a} &= \frac{m}{R} (\frac{1}{R} + \frac{a}{R^2} + ...) \\
 \frac{ma}{R} + \frac{ma^2}{R^2} + \frac{ma^3}{R^3} &= m + c \\
 \frac{c}{R^2} + \frac{c}{R^3} &= 2.19537' - 0.00045' + 0.0000001'... = 2.195' \\
 \text{sea level} &= 10,643.87' - 2.195' = 10,641.675' \\
 \text{OR}, & \quad m = s = 20,906,000 \\
 \frac{m}{R} = \frac{s}{R + a} = 10,643.87' = \frac{20,906,000}{R + a} \\
 \text{Elevation differences become significant when } c = 0.005' \text{ or } \frac{a}{R + a} = 0.99995 \\
 100 a \\
 \frac{c}{R + a} = 0.005' = \frac{0.99995}{20,906,000} \text{, that is when } a = 1045' \\
 \text{OR}, & \quad R = 20,906,000 \\
 \frac{R}{R + a} = 0.99995 \text{, } R - 0.99995 R = 0.99995 a \text{, } a = 1045' \\
 \text{Note: } R = 20,906,000' \text{ per Surveying by Bouchard & Moffit, Ninth edition, 1992, page 375.} \\
\end{align*}
\]
Solution to Problem 44

SOLUTION TO PROBLEM NO. 44 (TEXT)

Let the highway elevation = 100.00'. The inner rail elevation is therefore 103.00'.
The outer rail elevation is 103.00' plus the super-elevation:

\[
e \text{ (feet)} = \frac{0.0026585 \times 80^2 \times (1.2)}{12} = 0.44', \text{ so the outer rail elevation is 103.44'.}
\]

The grade across the tracks is 0.44'/5' = 0.088, or 8.8%. In Figure 1, a change from 0% grade to +8.8% grade is

\[
\frac{8.8 - 0}{0.682} = 12.9, \text{ but a comfortable } r = \frac{15,000}{70^2} = 3.06.
\]

The transition must be made as shown in Figure 2.
The rate for \(L_1 \) cannot exceed \(r = -3.06 \) and \(L_2 \) cannot exceed \(r = +3.06 \)

\[
r_1 = -3.06 = \frac{g_1 - 0}{L_1} \quad \text{and} \quad r_2 = 3.06 = \frac{8.8 - g_1}{L_2}
\]

so \(g_1 = -3.06 \times L_1 \) and \(L_2 = L_1 + 2.8758 \) (substituting \(g_1 \) in first equation into second)

also, 100.00' + \(g_1 \) \((L_1 / 2 + L_2 / 2) + 8.8 \times (L_2 / 2) = 103.00'

substituting \(-3.06 \times L_1 \) for \(g_1 \) and \((L_1 + 2.8758 \) for \(L_2 \) then expanding and rearranging yields

\[
L_1 = 1.7762, \ g_1 = -5.435%, \text{ and } L_2 = 4.6520
\]

Likewise, \(r_3 \) cannot exceed \(-3.06\) and \(r_4 \) cannot exceed \(+3.06\)

\[
r_3 = -3.06 = \frac{g_2 - 8.8}{L_3}, \text{ and } r_4 = 3.06 = \frac{0 - g_2}{L_4}
\]

so \(g_2 = -3.06 \times L_4 \) and \(L_3 = L_4 + 2.8758 \)

and, 103.44' + 8.8 \((L_3 / 2 + L_4 / 2) + g_2 \times (L_3 / 2 + L_4 / 2) = 100.00'

again, substituting \(-3.06 \times L_4 \) for \(g_2 \) and \((L_4 + 2.8758\) for \(L_3\), expanding and rearranging,

\[
L_4 = 2.2933, \ L_3 = 5.1691 \text{ and } g_2 = -7.0175%
\]