Solution to Problem Number 13 (Case I)

Let the central angle \(\theta = 2\phi \)

\[2\, R\, \phi = L, \text{ with } \phi \text{ expressed in radians} \]

\[R\, \tan \phi = T, \text{ with } \phi \text{ expressed in degrees} \]

\[\frac{T}{L/2} = \frac{R \tan \phi}{R} = \frac{\tan \phi}{\phi} = m \]

From trigonometry:

\[\tan \phi = \phi + \frac{2}{15} + \frac{17}{315} + \frac{62}{2835} + \ldots \]

\[m - 1 = \frac{\phi^2}{15} + \frac{2\phi^4}{15}, \text{ ignoring all powers above the fourth} \]

multiplying by 15/2 and rearranging, \(\phi^4 + 2.5\phi^2 - 7.5(m-1) = 0 \)

and, by utilizing the quadratic equation

\[\phi = \frac{-2.5 \pm \sqrt{(30m - 23.75)}}{2} \]

solve for \(\phi \) and substitute above to find an approximate \(R \).

For example: with \(T = 24.80' \) and \(L = 47.61' \)

\(\phi = 0.345927533 \) or \(19^{49'}13'' \), and \(R = 68.81' \pm \) rounding to the nearest foot and holding the tangent distance, \(R = 69' \) yields \(\phi = 19^{46'}10'' \) and \(L = 47.62' \) rounding to the nearest 10 feet, \(R = 70' \) yields \(\phi = 19^{30'}31'' \) and \(L = 47.67' \)

Solution to Problem Number 14

Construct \(AC' = BC \), parallel with \(BC \), AND \(C'D' = CD \) parallel with \(CD \) traverse from \(A \) to \(C' \) to \(D' \) and from \(A \) to \(F \) to \(E \). Inverse from \(E \) to \(D' \). The problem is now reduced to the triangle \(ED'D \) using the Law of Sines:

\[\frac{345.67}{\sin 115^{06'}08''} = \frac{173.201}{\sin D'DE} = \frac{DD'}{\sin (64^{53'}52'' - D'DE)} \]

From which \(D'DE = 26^{59'}01'' \) AND \(DE = 54^{32'}01'' \) E

\(DD' = AB = 234.56' \)