

by Dave Lindell, L.S.

φ

By difference of bearings, angle BAD = $45^{\circ}22'15"$.

Using the Law of Cosines, $BD^2 = AB^2 + AD^2 - 2$ AB AD cos 45°22'15", so BD = 83.1219

In triangle BQD, BQ = QD = radius. Angle BQD = $90^{\circ}44'30''$ (twice angle BAD).

Chord BD = $2 R \sin 45^{\circ}22'15''$, so that R = 58.3993'

In triangle AQB by the Law of Cosines, $92.174^2 = R^2 + R^2 - 2 R^2$ cos angle AQB, so that angle AQB = $104^{\circ}12'58''$.

Angle AQB + angle BQC = $104^{\circ}12'58'' + 45^{\circ}22'15'' = 149^{\circ}35'13''$

Chord AC = $2(58.3993) \sin[\frac{1}{2}(149°35'13")] = 112.709'$

(Note: This is a weak solution, using cosines of angles between 120° & 180°.)

Alternatively,

Extend line AD to intersect CA', where CA' = AC. Construct AF = AB.

$$AA' = 2 AC \cos \phi = AD + DA'$$
, so that $2AC \cos \phi - AD = DA'$

$$AE - \frac{1}{2}FD = AF$$
, and $FD = AD - AF$

$$2 AE - FD = 2 AF$$
, and $2AE - (AD - AF) = 2 AF$, and $2 AE - AD = AF$

but $AE = 2 AC \cos \phi$, so DA' = AF

Therefore, 2 AC $\cos \phi = AD + AF$, but AF = AB

so, 2 AC
$$\cos \phi = AD + AB$$
, or AC = $(AD + AB)/2 \cos \phi$

(This is known as the Three Chord Lemma)

by Benjamin Bloch, Ph.D.

Solution to Problem 169

a) Here x = 2, and n = 15. (15-2)/6 = 2 **R** 1, so that SDQ(2) = 2, and **R = 1**. From the table the answer is **8**. Thus, $SDQ(2^{15}) = 8$, and since $SDQ(32,868) = 27 \Rightarrow 9$ this answer must be *incorrect*. **Correct answer**: $(32,768) \Rightarrow 26 \Rightarrow 8$.

b) $16^7 = ? 268,335,456$.

SDQ(16) = 7. For n = 7 we need not use the remainder calculation. From the table the answer is 7. $SDQ(268,335,456) = 42 \Rightarrow 6$. So this answer is *incorrect*.

Correct answer: $(268,435,456) \Rightarrow 43 \Rightarrow 7$.

c) 8^{23} =? 590,295,810,358,305,651,712 => 85 => 13 => **4**. (23 - 2)/6 = 3 **R = 3**

From the table we get 8. So this answer is incorrect.

Correct answer: (590,295,810,358,705,651,712) => 89 => 17 => 8.

d) 147²⁸ =? 4,840,445,926,998,527,143,180,132,566,802,461,408,607,116,960,093,883,732,904,561=> 263 => 11 => **2**

 $SDQ(147) = 12 \Rightarrow 3$

(28-2)/6 = 4 R 2

From the table the answer is 9. Therefore the answer given is incorrect.

Correct answer: (4,840,445,926,998,527,143,180,132,566,802,461,408,607,116,960,091,883,732,904,561) => 261 => 9.